Effective Dose from Cone Beam CT Examinations in Dentistry

CT Users Group Meeting 2009

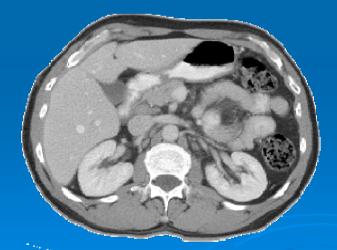
James Roberts

Clinical Scientist Radiation Protection Service, Velindre Hospital, Cardiff

Breakdown

Computed Tomography (CT)
Dental CBCT Background
Project Description

Background & Aim
Methodology
Results
Discussion


Conclusion

Computed Tomography (CT)

CT Scanners produce computer generated three-dimensional medical images formed from large numbers of two-dimensional projection images acquired during rotation around a single axis (the patient).

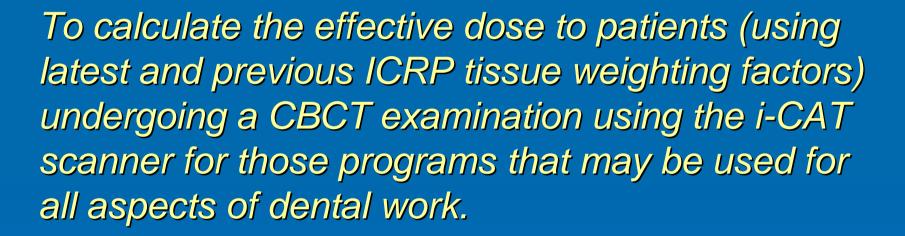
Current CT Scanners

Dental Cone Beam CT

- Cone beam CT (CBCT) images formed from a range of projection images acquired during source/detector rotation around the patient.
- Produces 3-dimensional information on the facial skeleton and teeth.
- Increasingly used in the UK for orthodontics, orthognathic surgery, trauma and implantology.
- Most dental equipment manufacturers now offer CBCT scanners in addition to other specialists.

Study Background

- i-CAT CBCT unit installed at University Dental Hospital Cardiff (UDHC) in 2008.
- Widely reported that "Effective doses from CBCT examinations are higher than traditional dental radiography but lower than conventional CT" – This is a wide range!
- To allow clinicians to justify performing CBCT exposures a firmer grasp of the actual effective dose delivered was needed.
- RPS Cardiff were approached by the leading radiologist at UDHC to aid in determining the effective dose from the range of i-CAT protocols that would be adopted.

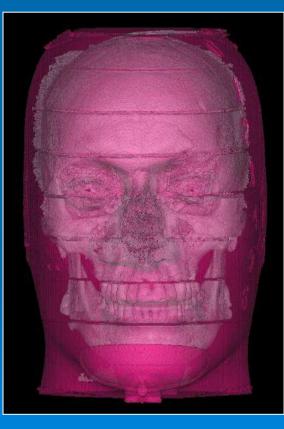


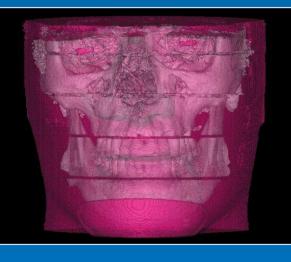
i-CAT CBCT scanner, Imaging Sciences International

The i-CAT scanner

- Manufactured by Imaging Sciences International, USA.
- Standard, high-frequency fixed anode X-ray tube.
- > 120 kVp, 3–8 mA.
- 6cm mandible, 6cm maxilla, 13cm mandible/maxilla and full FOVs.
- > 20 x 25 cm amorphous silicon (a-Si) flat panel detector.
- Tube and generator performance levels well within IPEM91 tolerance levels prior to study.

Study Methodology


- All dose measurements were performed using TLD-100 (LiF:Mg,Ti) chips calibrated in CT beam conditions and read using a calibrated hot gas reader.
- Three chips were positioned at each of 24 separate locations within the head and neck region of an adult tissue-equivalent Rando phantom.
- The chosen locations represented the most radiosensitive organs in the head and neck region and mirrored those locations identified by Ludlow et al^[1].
- The fraction of each organ irradiated during the scans was based on the values determined by Ludlow et al for a full FOV scan and modified by the local radiologists for all other scan volumes.



Investigated Scan Volumes

22cm full FOV

13cm mandible/maxilla

6cm mandible*

6cm maxilla*

* Standard and High Resolution modes

TLD Locations in Rando

Fractions Irradiated and TLDs used for Dose Calculation

	Fraction Irradiated (%)				TLD ID
	Full FOV*	6cm Mandible	6cm Maxilla	13cm Man/Max	
Bone Marrow	16.5	5.0	5.0	10.0	
Mandible	1.3	1.3	0.7	1.3	13,14,17,18
Calvaria	11.8	2.0	2.6	5.3	1,2,3
Cervical Spine	3.4	1.7	1.7	3.4	15
Thyroid	100.0	100.0	100.0	100.0	22,23
Oesophagus	10.0	10.0	7.0	10.0	24
Skin	5.0	2.0	2.0	4.0	8,9,10,16
Bone surface	16.5	5.0	5.0	10.0	
Mandible	1.3	1.3	0.7	1.3	13,14,17,18
Calvaria	11.8	2.0	2.6	5.3	1,2,3
Cervical Spine	3.4	1.7	1.7	3.4	15

Continued...

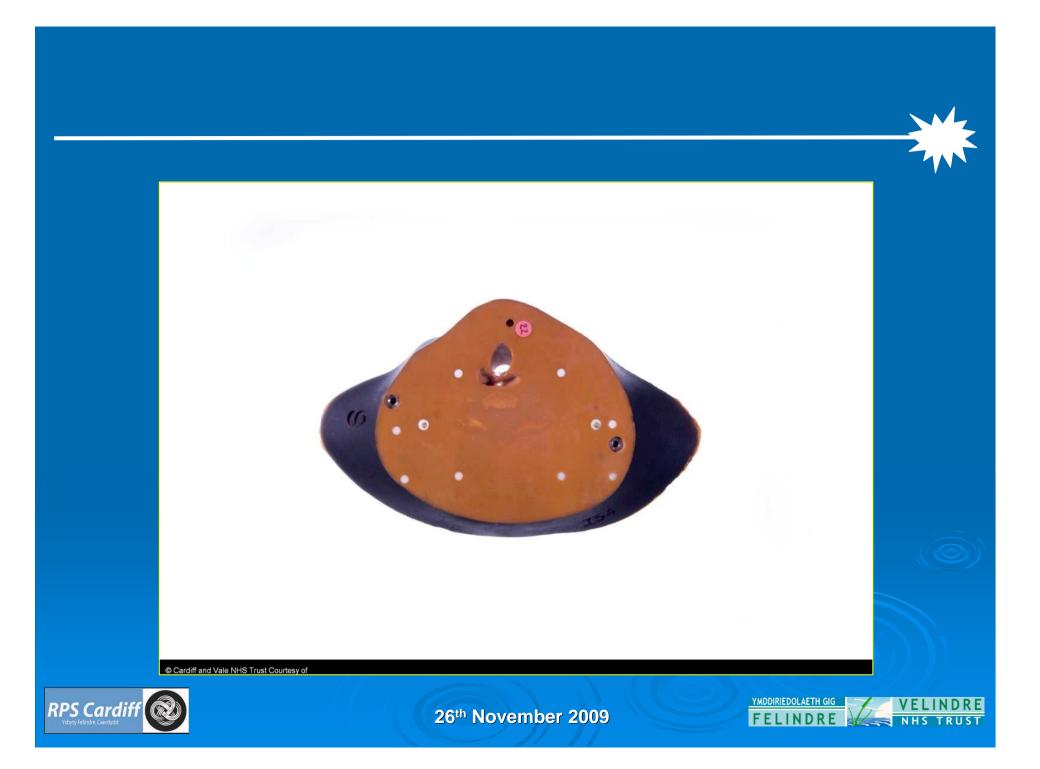
*,Values derived by Ludlow et al; +, Submandibular gland dose used to indicate Oral mucosa dose

Fractions Irradiated and TLDs used for Dose Calculation

Continued...

	Fraction Irradiated (%)				
	Full FOV*	6cm Mandible	6cm Maxilla	13cm Man/Max	TLD ID
Salivary Glands	100.0	100.0	100.0	100.0	
Parotid	100.0	100.0	100.0	100.0	11,12
Submandibular	100.0	100.0	100.0	100.0	19,20
Sublingual	100.0	100.0	100.0	100.0	21
Brain	100.0	20.0	40.0	60.0	4,5
Remainder					
Brain	100.0	20.0	40.0	60.0	4,5
Lymphatic Nodes	5.0	5.0	5.0	5.0	11,12,19,20,2 3
Muscle	5.0	5.0	5.0	5.0	6,7,15,21,24
Extrathoracic tissue	100.0	100.0	100.0	100.0	11,12,19,20,2 1
Oral Mucosa	100.0	100.0	100.0	100.0	19,20+
Pituitary	100.0	100.0	100.0	100.0	5
Eyes	100.0	100.0	100.0	100.0	6,7,8,9

*,Values derived by Ludlow et al; +, Submandibular gland dose used to indicate Oral mucosa dose



Phantom Preparation



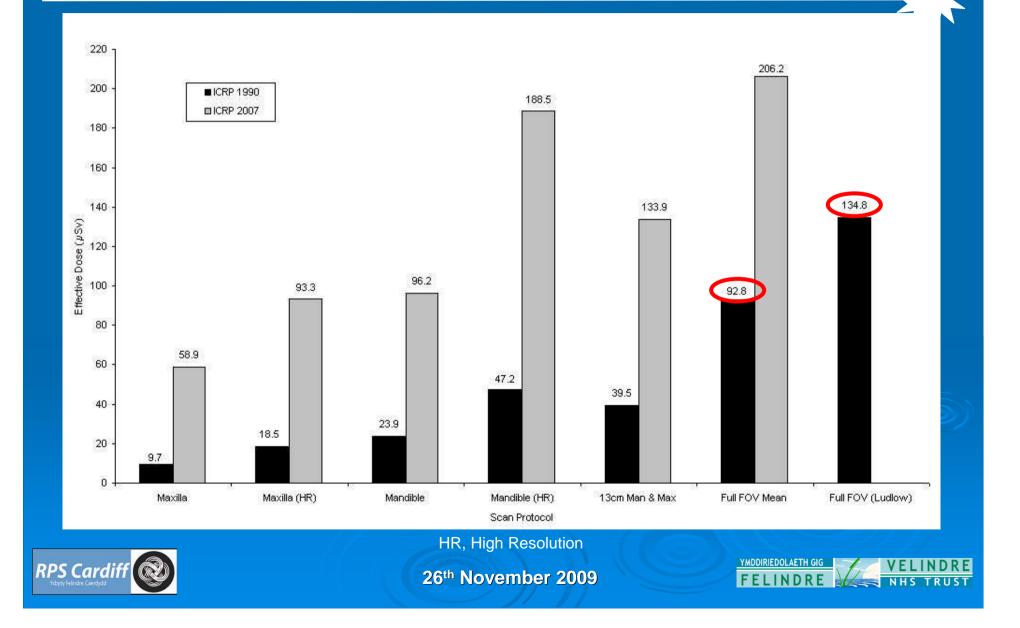


Phantom Setup

Resultant i-CAT Images

RPS Cardiff

Dose Calculations


- Mean site dose calculated between the three chips per scan.
- Radiation weighted dose (H_T) calculated as the product of the background subtracted mean organ TLD dose and the fraction of that organ in the irradiated field.
- Effective dose (μ Sv) calculated as product of radiation weighted dose (H_T) and relevant ICRP tissue weighting factor (w_T) summed over all of the tissues/organs exposed (E = Σ w_T x H_T).

1990 w _T	$2007' w_T$
0.12	0.12
0.05	0.12
0.12	0.12
0.12	0.12
0.12	0.12
0.05	0.04
0.05	0.04
0.20	0.08
0.05	0.04
0.05	0.04
0.01	0.01
Rem	0.01
Rem	Rem
n/a	0.01
0.01	0.01
0.05	0.12
	0.12 0.05 0.12 0.12 0.12 0.05 0.05 0.05 0.05 0.05 0.05 0.01 Rem Rem Rem n/a 0.01

Effective Dose Results for all Examinations

Comparative Results

Exam Type	Examination	Effective Dose (μ Sv) [ICRP1990]	
	Full FOV	92.8	
	6cm Mandible	23.9	
i-CAT	6cm Maxilla	9.7	
CBCT	6cm Mandible (High Res)	47.2	
	6cm Maxilla (High Res)	18.5	
	13cm Mandible/Maxilla	39.5	
Conventional	Panoramic	~13	
Dental	Cephalometry	~3	
Conventional	CT Head	~2000	
СТ	CT Dental (5cm FOV) (Siemens)	250 – 300	
diff 🔞	26 th November	2009	VELIND NHS TR

Discussion

- Reasonably good agreement with Ludlow et al for full FOV examination.
- Marked difference between ICRP₁₉₉₀ and ICRP₂₀₀₇ effective doses. Indicative of factor changes in head region e.g. salivary glands, brain, oral mucosa etc...
- Doses greater than traditional techniques e.g. panoramic radiography ~13uSv Vs iCAT 13cm Man/Max ~40uSv.
- Doses significantly less than conventional CT head examination (~2000uSv) and specific CT dental protocols.

Conclusion

- Despite calculated doses being an order of magnitude less than a conventional CT head scan it was demonstrated that on average a full FOV CBCT scan delivers significantly greater radiation dose to the patient than traditional dental imaging techniques.
- Important that dental CBCT examinations be fully justified with evidence-based selection criteria produced to aid the clinician.

References & Related Articles

- MZ
- Guerrero ME, Jacobs R, Loubele M, Schutyser F, Suetens P, van Steenberghe D, et al. State-of-the-arcon cone beam CT imaging for preoperative planning of implant placement. Clinical Oral Investigations. 2006 Mar;10(1):1-7.
- Heiland M, Schulze D, Rother U, Schmelzle R, Heiland M, Schulze D, et al. Postoperative imaging of zygomaticomaxillary complex fractures using digital volume tomography. Journal of Oral & Maxillofacial Surgery. 2004 Nov;62(11):1387-91.
- Ziegler CM, Woertche R, Brief J, Hassfeld S, Ziegler CM, Woertche R, et al. Clinical indications for digital volume tomography in oral and maxillofacial surgery. Dento-Maxillo-Facial Radiology. 2002 Mar;31(2):126-30.
- Cevidanes LH et al.. Superimposition of 3D cone-beam CT models of orthognathic surgery patients. Dentomaxillofac Radiol 2005a;34(6):369-375.
- Cevidanes LH et al. Three-dimensional cone-beam computed tomography for assessment of mandibular changes after orthognathic surgery. Am J Orthod Dentofacial Orthop 2007;131(1):44-50.
- Cevidanes LH et al. Comparison of relative mandibular growth vectors with high-resolution 3-dimensional imaging. Am J Orthod Dentofacial Orthop 2005b;128(1):27-34.
- Holberg C et al. Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 2005;66(6):434-444.
- Kau CH et al. Three-dimensional cone beam computerized tomography in orthodontics. J Orthod 2005;32(4):282-293.
- Mah J et al. Management of impacted cuspids using 3-D volumetric imaging. J Calif Dent Assoc 2003a;31(11):835-841.
- Sukovic P. Cone beam computed tomography in craniofacial imaging. Orthod & Craniofacial Research 6 Suppl 1 2003; discussion 179-182: 31-36.
- Wortche R et al. Clinical application of cone beam digital volume tomography in children with cleft lip and palate. Dentomaxillofac Radiol 2006;35(2):88-94.
- Ludlow JB et al. Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and Orthophos Plus DS panoramic unit. Dentomaxillofac Radiol 2003;32(4):229-234.

References & Related Articles cont..

- Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol 2006;35:219-226.
- Iwai K et al. Estimation of effective dose from limited cone beam x-ray CT examination. Dent Radiol 2000;40:251-259.
- Tsiklakis K et al. Dose reduction in maxillofacial imaging using low dose Cone Beam CT. Eur J Radiol 2005;56(3):413-417.
- International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37. Elsevier, 2007.
- International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann ICRP 21. Oxford: Pergamon Press, 1991.
- > Martin CJ. Effective dose: how should it be applied to medical exposures? Br J Radiol 2007;80:639-647.
- Nakajima A et al. Two- and three-dimensional orthodontic imaging using limited cone beam-computed tomography. Angle Orthod 2005;75(6):895-903.
- Mah JK et al. Radiation absorbed in maxillofacial imaging with a new dental computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003b;96(4):508-513.
- Shrimpton PC, Hillier MC, Lewis MA, Dunn M. Doses from computed tomography (CT) examinations in the UK – 2003 Review. Report No. NRPB-W67. Chilton, UK: NRPB, 2005.
- Isaacson KG and Thom AR. Orthodontic Radiographs Guidelines. London: British Orthodontic Society, 2001.
- Pendlebury ME et al. Selection Criteria for Dental Radiography. 2nd ed. London: Faculty of General Dental Practitioners, 2004.
- National Radiological Protection Board. Occupational, Public and Medical Exposure. Documents of the NRPB 1993;4.
- > Siemens Medical Solutions. Somatom Sensation 64 Application Guide, 2005.

*

Thank You

James Roberts

Clinical Scientist, Radiation Protection Service Cardiff

Further details available - Roberts JA, Drage NA, Davies J, Thomas DW. Effective dose from cone beam CT examinations in dentistry. Br J Radiol 2009; 82: 35-40.

